Structural Investigations of Ylides. Part I. Crystal and Molecular Structures of Trimethylammoniobenzamidate and Trimethylammonionitramidate: Two Stabilised Nitrogen-Nitrogen Ylides ${ }^{1}$

By A. F. Cameron,* N. J. Hair, and D. G. Morris, Chemistry Department, The University of Glasgow, Glasgow G12 800

Crystal structure analyses of the title compounds (IIa) and (III) have been carried out with diffractometer data. Both were solved by direct methods and refined by least-squares techniques to $R 0.072$ [(IIa). 977 reflexions] and 0.078 [(III). 378 reflexions]. Crystal data are: (IIa), monoclinic, space group $P 2_{1} / c, Z=4, a=11 \cdot 620$ (10). $b=7 \cdot 928(6), c=11 \cdot 454(10) A, \beta=113 \cdot 75(3)^{\circ}$: (III), orthorhombic, space group Pnma, $Z=4, a=12 \cdot 245(6)$. $b=6.718(3), c=7.099(5) \AA$. The results of the analyses indicate significant charge delocalisation on the oxygen atoms of the stabilising benzoyl- and nitro-groups respectively. In both molecules the quaternary nitrogen and delocalised anionic moieties adopt a syn-planar relationship, this conformation resulting in possible interactions between oxygen and methyl-hydrogen atoms in each case. In compounds (II : a-d) temperature invariant n.m.r. spectra, consistent with a single conformation in solution, were obtained.

Ylides of first-row elements in general contain a quaternary ammonium group vicinal to an electronegative atom X as in (I), ${ }^{2}$ the simplest compounds of this type being the amine oxides ($\mathrm{I} ; \mathrm{X}=\mathrm{O}$), although the intermediacy of ylides of the type $\mathrm{Ph}_{2} \overline{\mathrm{C}} \cdot \mathrm{OHR}$ has been recently demonstrated in the reaction of diphenylcarbene with alcohols. ${ }^{3}$ However, in cases where X is either nitrogen or carbon, the ylides require further stabilisation, and this is usually achieved by the presence of electron-withdrawing groups such as $-\mathrm{CHO},-\mathrm{COMe}$, $-\mathrm{COPh},-\mathrm{CO}_{2} \mathrm{Me},-\mathrm{NO}_{2}$, or $-\mathrm{SO}_{2} \mathrm{Ar}$, bonded to the

[^0]electronegative atom X. In ylides of this type although formal bonding of the $d_{\pi}-p_{\pi}$ type between the 'onium

(I)

(II) R
a; COPh
b; CHO
c; \quad соме
d; $\mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{Me}_{3}{ }^{\mathrm{N}}-\overline{\mathrm{N}}-\mathrm{NO}_{2}$
(III)
nitrogen and vicinal electronegative atoms is not possible, the $\stackrel{+}{\mathrm{N}}-\overline{\mathrm{X}}$ bond-order being formally restricted
${ }^{3}$ D. Bethell, A. R. Newall, and D. Whittaker, J. Chem. Soc. (B), 1971, 23.
to unity, there exists the possibility of the negative charge being delocalised through the electronegative moiety.

As part of an examination of the bonding, charge distributions, and conformations of first-row ylides, we have determined the crystal structures of the N-trimethylammonioamidates (IIa) ${ }^{4}$ and (III), ${ }^{5}$ which are representative of the class of ylides ($\mathrm{I} ; \mathrm{X}=\mathrm{N}-$).

EXPERIMENTAL

Crystal Data.-(i) (IIa), $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}, M=178 \cdot 2$. Monoclinic, $a=11 \cdot 620(10), b=7 \cdot 928(6), c=11 \cdot 454(10) \AA, \beta=$ $113.75(3)^{\circ}, U=965.8 \AA^{3}, D_{\mathrm{m}}=1.21$ (by flotation), $Z=4$, $D_{\mathrm{c}}=1 \cdot 23, F(000)=384$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right)$. Mo$K_{\alpha} X$-radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.87 \mathrm{~cm}^{-1}$.
(ii) (III), $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}, \quad M=119 \cdot 1$. Orthorhombic, $a=$ $12 \cdot 245(6), \quad b=6.718(3), \quad c=7 \cdot 099(5) \quad \AA, \quad U=574 \cdot 1 \AA^{3}$, $D_{\mathrm{m}}=1.36$ (by flotation), $Z=4, D_{\mathrm{c}}=1 \cdot 38, F(000)=256$. Space group Pnma $\left(D_{2 h}^{16}\right) . \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=1.23 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-The unit-cell parameters of both compounds were initially determined from oscillation and Weissenberg photographs taken with $\mathrm{Cu}-K_{\alpha} \quad(\lambda=$ $1.5418 \AA$) radiation, and from precession photographs taken with Mo- $K_{\alpha}(\lambda=0.7107 \AA)$ radiation, the values later being refined by least-squares techniques before the diffractometer data collections. Although the systematic absences in the $0 k 0$ and $h 0 l$ spectra uniquely determine the space group of (IIa) as $P 2_{1} / c$, the absences in the spectra of (III) result in the choice of space groups Pnma and Pna2. The correctness of the former space group was indicated first by statistical tests, and later by a trial refinement using the non-restrictive symmetry of space group Pna2. As a consequence, molecules of (III) in the solid state are restricted to possess crystallographic mirror symmetry, the mirror plane containing the atoms $\mathrm{O}^{\prime}(\mathbf{1}), \mathrm{O}^{\prime}(2), \mathrm{N}^{\prime}(1)$, $\mathrm{N}^{\prime}(2), \mathrm{N}^{\prime}(3)$, and $\mathrm{C}^{\prime}(1)$.

Intensity measurements were made on a Hilger and Watts Y 290 computer-controlled diffractometer with $\mathrm{Sr} / \mathrm{Zr}$ balanced filters [for (IIa)] and Zr filters [for (III)]. For (IIa) a flat hexagon $0.6 \times 0.5 \times 0.2 \mathrm{~mm}$ was mounted about $b .977$ independent reflexions were obtained by the ω-scan technique in the range $2 \theta 0-44^{\circ}$. For (III) a flat plate $0.4 \times 0.2 \times 0.05$ was mounted about c. 378 independent reflexions ($I>3 \sigma_{I}$) were obtained by the 2θ-scan technique in the range $2 \theta 0-50^{\circ}$. Both sets of intensity data were corrected for the appropriate Lorentz and polarisation factors, but absorption effects were considered negligible in both cases and were ignored.

Structure Determinations.-Both structures were solved by the application of the symbolic addition method, ${ }^{6}$ using programs developed by Stewart et al., ${ }^{7}$ and modified by the Glasgow group. Initial E-maps based on 140 reflexions for (IIa) and 80 reflexions for (III), completely revealed both structures, and improved co-ordinates for use in the leastsquares refinements were obtained in each case by two rounds of structure-factor and electron-density calculations. After each structure-factor calculation, in which overall isotropic thermal parameters $U_{\text {iso }}=0.05 \AA^{2}$ were assumed,

* In all structure-factor calculations, the atomic scattering factors used are taken from ref. 8.
\dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are supplied as full size copies).
the two sets of data were placed on approximate absolute scales by equating $k \Sigma\left|F_{0}\right|$ and $\Sigma\left|F_{\mathrm{c}}\right|$.

Structure Refinements.-The positional, vibrational, and overall-scale parameters for both structures were refined by three-dimensional least-squares calculations, which in the case of (IIa) converged after 15 cycles when R was 0.072 and $R^{\prime}\left(=\Sigma w \Delta^{2} / \Sigma w\left|F_{o}\right|^{2}\right)$ was 0.005 , and for (III) converged after 10 cycles when R was 0.078 and R^{\prime} was 0.007 . Details of both refinements are given in Table 1.

Table 1

(a) For (IIa)

Cycles	Parameters refined $\quad \begin{gathered}\text { Final } \\ R\end{gathered}$	$\underset{R^{\prime}}{\text { Final }^{\prime}}$
1-3	$x, y, z, U_{\text {iso }}$ for $\mathrm{O}, \mathrm{N}, \mathrm{C}$, overall scale- 0.164 factor, full matrix, unit weights.	0.0221
4-9	$x, y, z, U_{i j}$ for $\mathrm{O}, \mathrm{N}, \mathrm{C}$, overall scale- 0.083 factor, full matrix, weighting scheme adjusted, hydrogen atom contributions included but not refined.	0.0070
10-12	$x, y, z, U_{\mathrm{tbo}}$ for H only, overall scale- 0.076 factor, full matrix, weighting scheme applied, contributions of other atoms included but not refined.	0.005
13-15	$x, y, z, U_{i j}$ for $\mathrm{O}, \mathrm{N}, \mathrm{C}, x, y, z, U_{\text {ibo }}$ for 0.072 H , overall scale-factor, Block diagonal, weighting scheme applied.	0.0053

(b) For (III)
$\left.\begin{array}{llll}1-4 & x, y, z, U_{\text {ibo }} \text { for } \mathrm{O}, \mathrm{N}, \mathrm{C}, * \text { overall scale- } \\ \text { factor, full matrix, unit weights. }\end{array}\right] \quad 0.0189$ for H, overall scale-factor, full matrix, unit weights.

* The appropriate restrictions were applied for atoms lying on the crystallographic mirror plane at $y=0.2500$.

Difference syntheses calculated after the preliminary cycles of both refinements revealed the positions of all the hydrogen atoms of the two structures. Positional and isotropic thermal parameters for the hydrogen atoms were then refined in later cycles. In all the cycles of the refinement of (IIa), a weighting scheme was applied of the form: $\sqrt{ } w=\left\{\left[1-\exp \left(-p_{1}(\sin \theta / \lambda)^{2}\right] /\left[1+p_{2}\left|F_{0}\right|+p_{3}\left|F_{0}\right|^{2}\right]\right\}^{\frac{1}{2}}\right.$. Initially the p parameters were chosen to give unit weights to all reflexions, but were adjusted in later cycles according to an $\left(\left|F_{0}\right|\right.$ and $\left.\sin \theta / \lambda\right)$ analysis of $w \Delta^{2}$, the final values being: $p_{1}=500, p_{2}=0.01$, and $p_{3}=0.0001$. Throughout the refinement of (III) it was not found necessary to apply other than unit weights to the data, and no weighting scheme was used.

On the convergence of both refinements, the calculation of electron-density distributions and difference syntheses revealed no errors in the structures, and the refinements were therefore considered complete. Tables of observed and final calculated structure factors * appear in Supplementary Publication No. SUP 20377 (5 pp., 1 microfiche). \dagger

Final fractional co-ordinates and thermal parameters for both compounds are given in Table 2, and Table 3 contains all bond lengths, valency angles, and pertinent
${ }^{4}$ M. S. Gibson and A. W. Murray, J. Chem. Soc., 1965, 880.
5 J. Epsztajn and A. R. Katritzky, Tetrahedron Letters, 1969, 4739.
${ }_{6}^{69 .}$ J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
7 J. M. Stewart, Technical Report TR-67-58, University of Maryland, 1967.
${ }_{8}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

Table 2
(a) Fractional co-ordinates and isotropic thermal parameters (\AA^{2}) for hydrogen atoms for (IIa)

	x / a	y / b	z / c	$U_{\text {tso }}$
$\mathrm{O}(1)$	$0.57612(28)$	$0 \cdot 56779(43)$	0.18706(31)	
$\mathrm{N}(1)$	$0.73327(33)$	$0 \cdot 79510(43)$	$0 \cdot 35623$ (33)	
$\mathrm{N}(2)$	$0.78068(33)$	$0 \cdot 64719(44)$	$0 \cdot 31187(32)$	
C(1)	$0 \cdot 84956(52)$	$0 \cdot 87933$ (73)	$0 \cdot 44653(54)$	
C(2)	$0 \cdot 66483$ (54)	$0 \cdot 91490$ (64)	$0 \cdot 25102(48)$	
$\mathrm{C}(3)$	$0 \cdot 65195(51)$	$0 \cdot 74764(65)$	$0 \cdot 42487(46)$	
C(4)	$0.69233(41)$	$0 \cdot 55200$ (52)	$0 \cdot 23021(37)$	
C(5)	$0.74644(39)$	$0 \cdot 40627(50)$	$0 \cdot 18261(37)$	
$\mathrm{C}(6)$	$0 \cdot 87096(41)$	$0.35595(56)$	$0 \cdot 24328(39)$	
C(7)	$0.91848(43)$	$0 \cdot 23305(57)$	$0 \cdot 19039(43)$	
$\mathrm{C}(8)$	$0 \cdot 84249$ (47)	$0 \cdot 15877(57)$	$0.07625(43)$	
C(9)	$0.71855(45)$	$0 \cdot 20743(57)$	$0 \cdot 01660(40)$	
$\mathrm{C}(10)$	$0 \cdot 66940$ (43)	$0 \cdot 32943$ (54)	$0.06963(40)$	
$\mathrm{H}(11)$	$0 \cdot 8255(43)$	$0.9797(64)$	$0 \cdot 4847$ (43)	$0 \cdot 065$ (16)
$\mathrm{H}(12)$	$0 \cdot 8960(51)$	$0.9145(74)$	$0 \cdot 3925(51)$	$0 \cdot 097(20)$
H(13)	$0 \cdot 8779(40)$	$0 \cdot 7870(56)$	$0 \cdot 5186(40)$	$0 \cdot 050(14)$
$\mathrm{H}(21)$	$0 \cdot 5922(48)$	$0 \cdot 8530$ (70)	$0 \cdot 1896(48)$	$0 \cdot 083(18)$
$\mathrm{H}(22)$	$0 \cdot 6395(44)$	$1 \cdot 0099(65)$	$0 \cdot 2857(45)$	$0 \cdot 068(16)$
$\mathrm{H}(23)$	$0.7314(48)$	$0 \cdot 9535(70)$	$0 \cdot 2145(48)$	$0 \cdot 089(19)$
$\mathrm{H}(31)$	$0 \cdot 5748(46)$	$0 \cdot 6847(67)$	$0 \cdot 3574(46)$	$0 \cdot 076(17)$
$\mathrm{H}(32)$	$0 \cdot 6313(35)$	$0 \cdot 8616(50)$	$0 \cdot 4586(35)$	$0 \cdot 071$ (12)
H(33)	$0 \cdot 7121(45)$	$0 \cdot 6691$ (66)	$0 \cdot 4939(45)$	$0 \cdot 076$ (17)
H(6)	$0 \cdot 9204(35)$	$0 \cdot 4092(50)$	$0 \cdot 3271$ (35)	$0 \cdot 032(12)$
H(7)	1.0121(46)	$0 \cdot 1981$ (62)	$0 \cdot 2363(46)$	$0 \cdot 064(16)$
$\mathrm{H}(8)$	$0 \cdot 8714(41)$	$0 \cdot 0694(59)$	$0.0321(41)$	$0.055(14)$
H(9)	$0 \cdot 6635(38)$	$0 \cdot 1495(54)$	$-0.0613(37)$	$0.039(12)$
$\mathrm{H}(10)$	$0 \cdot 5836(45)$	$0 \cdot 3667$ (68)	$0 \cdot 0273(47)$	$0 \cdot 077(18)$

(b) Anisotropic temperature factors ${ }^{*}\left(\AA^{2}\right)$ for (IIa)

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
$\mathrm{O}(1)$	$0 \cdot 0566$	0.0805	0.0841	-0.0493	0.0419	-0.0027
N(1)	0.0653	0.0503	0.0600	-0.0169	0.0466	$0 \cdot 0032$
N(2)	0.0641	0.0510	0.0610	-0.0223	0.0487	0.0072
$\mathrm{C}(1)$	0.0858	$0 \cdot 0846$	$0 \cdot 1030$	-0.0930	0.0599	-0.0273
$\mathrm{C}(2)$	$0 \cdot 1179$	0.0600	0.0794	0.0228	0.0916	$0 \cdot 0479$
$\mathrm{C}(3)$	$0 \cdot 1072$	0.0716	0.0730	-0.0047	$0 \cdot 1147$	0.0069
$\mathrm{C}(4)$	0.0721	0.0479	0.0476	0.0034	0.0454	-0.0070
C(5)	$0 \cdot 0649$	0.0410	0.0511	0.0010	0.0546	$0 \cdot 0019$
C(6)	0.0654	0.0559	0.0533	0.0002	0.0441	0.0087
C(7)	$0 \cdot 0688$	$0 \cdot 0543$	0.0699	-0.0018	0.0583	$0 \cdot 0051$
C(8)	0.0890	$0 \cdot 0505$	0.0673	-0.0072	0.0765	$0 \cdot 0024$
$\mathrm{C}(9)$	$0 \cdot 0846$	$0 \cdot 0523$	0.0551	-0.0071	$0 \cdot 0520$	-0.0160
$\mathrm{C}(10)$	$0 \cdot 0749$	$0 \cdot 0496$	0.0547	-0.0064	0.0534	-0.0088
	Mean estimated standard deviations (\AA^{2})					
	$U_{\text {11 }}$	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
O	0.0019	$0 \cdot 0023$	$0 \cdot 0022$	0.0038	0.0033	$0 \cdot 0035$
N	0.0024	$0 \cdot 0021$.	0.0022	0.0036	0.0037	0.0038
C	$0 \cdot 0034$	$0 \cdot 0028$	$0 \cdot 0029$	$0 \cdot 0048$	$0 \cdot 0052$	$0 \cdot 0052$

(c) Fractional co-ordinates and isotropic thermal parameters (\AA^{2}) for hydrogen atoms for (III)

	x / a	y / b	z / c	$U_{\text {iso }}$
$\mathrm{O}^{\prime}(1)$	$0 \cdot 49169(45)$	$0 \cdot 25000$	$0.50415(89)$	
$\mathrm{O}^{\prime}(2)$	$0.37461(53)$	$0 \cdot 25000$	0.26996(78)	
$\mathrm{N}^{\prime}(1)$	$0 \cdot 33316(43)$	$0 \cdot 25000$	$0 \cdot 75728(78)$	
$\mathrm{N}^{\prime}(2)$	$0.30833(43)$	$0 \cdot 25000$	$0 \cdot 55464(74)$	
$\mathrm{N}^{\prime}(3)$	$0 \cdot 39474$ (53)	$0 \cdot 25000$	$0 \cdot 44281$ (77)	
$\mathrm{C}^{\prime}(1)$	$0 \cdot 22237(62)$	$0 \cdot 25000$	$0 \cdot 84537(119)$	
$\mathrm{C}^{\prime}(2)$	$0 \cdot 39067(50)$	0.06268(97)	$0 \cdot 81910$ (82)	
$\mathrm{H}^{\prime}(11)$	$0 \cdot 2353(94)$	$0 \cdot 2500$	$0.9976(159)$	0.058(30)
$\mathrm{H}^{\prime}(12)$	$0 \cdot 1785(47)$	$0 \cdot 1328(89)$	$0 \cdot 7959(85)$	$0.033(18)$
$\mathrm{H}^{\prime}(21)$	$0 \cdot 4598(40)$	$0 \cdot 0594(76)$	0.7610(73)	$0.011(13)$
$\mathrm{H}^{\prime}(22)$	$0 \cdot 4001(47)$	$0.0481(88)$	$0 \cdot 9732(81)$	0.025 (16)
$\mathrm{H}^{\prime}(23)$	$0 \cdot 3316(59)$	$-0.0573(110)$	$0 \cdot 7748(107)$	$0 \cdot 060(25)$

(d) Anisotropic temperature factors * (\AA^{2}) for (III)

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
$\mathrm{O}^{\prime}(1)$	0.0336	0.0642	0.0540	0.0000	0.0190	0.0000
$\mathrm{O}^{\prime}(2)$	0.0647	0.0634	0.0352	0.0000	0.0036	0.0000
$\mathrm{~N}^{\prime}(1)$	0.0280	0.0351	0.0289	0.0000	0.0134	0.0000
$\mathrm{~N}^{\prime}(2)$	0.0291	0.0392	0.0275	0.0000	-0.0091	0.0000
$\mathrm{~N}^{\prime}(3)$	0.0491	0.0350	0.0260	0.0000	0.0143	0.0000
$\mathrm{C}^{\prime}(1)$	0.0358	0.0469	0.0457	0.0000	0.0334	0.0000
$\mathrm{C}^{\prime}(2)$	0.0512	0.0520	0.0455	0.0303	0.0041	0.0384
Mean estimated standard deviations $\left(\AA^{2}\right)$						

Table 2 (Continued)
$\begin{array}{lcccccc} & U_{11} & U_{22} & U_{33} & 2 U_{23} & 2 U_{31} & 2 U_{12} \\ \mathrm{O} & 0.0031 & 0.0037 & 0.0030 & & 0.0050 & \\ \mathrm{~N} & 0.0028 & 0.0029 & 0.0025 & & 0.0044 & \\ \mathrm{C} & 0.0032 & 0.0036 & 0.0034 & 0.0053 & 0.0054 & 0.0056\end{array}$

* The anisotropic temperature factor is in the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+\right.\right.$ $\left.\left.2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$.

Table 3
Interatomic distances ((\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses
(a) Bonded distances (IIa)

$\mathrm{O}(1)-\mathrm{C}(4)$	$1 \cdot 243(5)$	$\mathrm{C}(5)-\mathrm{C}(10)$	$1 \cdot 383(6)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1 \cdot 471(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 375(6)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 489(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 380(7)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1 \cdot 488(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 377(7)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1 \cdot 500(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 382(6)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1 \cdot 313(6)$	$\mathrm{Mean} \mathrm{C}-\mathrm{H}(\mathrm{Ph})$	$0.99(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 518(6)$	$\mathrm{Me})$	
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 388(6)$		
(b) Interbond angles $(11 a)$			
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$103 \cdot 7(3)$	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 02(5)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(2)$	$112 \cdot 5(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$112 \cdot 0(4)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$112 \cdot 6(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$117 \cdot 8(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$108 \cdot 4(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$119 \cdot 5(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$109 \cdot 6(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 4(4)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$109 \cdot 9(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120 \cdot 2(4)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(4)$	$114 \cdot 2(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119 \cdot 5(4)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(2)$	$129 \cdot 6(4)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 9(4)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$118 \cdot 3(4)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$119 \cdot 5(4)$

(c) Intramolecular non-bonded distances (IIa)

$\mathrm{O}(1) \cdots \mathrm{N}(1)$	$2 \cdot 74$	$\mathrm{~N}(2) \cdots \mathrm{C}(10)$	$3 \cdot 58$
$\mathrm{O}(1) \cdots \mathrm{C}(2)$	$2 \cdot 93$	$\mathrm{C}(1) \cdots \mathrm{C}(4)$	$3 \cdot 54$
$\mathrm{O}(1) \cdots \mathrm{C}(3)$	$2 \cdot 88$	$\mathrm{C}(2) \cdots \mathrm{C}(4)$	$2 \cdot 92$
$\mathrm{O}(1) \cdots \mathrm{C}(6)$	$3 \cdot 63$	$\mathrm{C}(3) \cdots \mathrm{C}(4)$	$2 \cdot 90$
$\mathrm{O}(1) \cdots \mathrm{C}(10)$	$2 \cdot 78$	$\mathrm{C}(4) \cdots \mathrm{C}(7)$	$3 \cdot 80$
$\mathrm{O}(1) \cdots \mathrm{H}(21)$	$2 \cdot 27$	$\mathrm{C}(4) \cdots \mathrm{C}(9)$	$3 \cdot 76$
$\mathrm{O}(1) \cdots \mathrm{H}(31)$	$2 \cdot 17$	$\mathrm{C}(5) \cdots \mathrm{C}(8)$	$2 \cdot 77$
$\mathrm{~N}(1) \cdots \mathrm{C}(5)$	$3 \cdot 71$	$\mathrm{C}(6) \cdots \mathrm{C}(9)$	$2 \cdot 75$
$\mathrm{~N}(2) \cdots \mathrm{C}(6)$	$2 \cdot 78$	$\mathrm{C}(7) \cdots \mathrm{C}(10)$	$2 \cdot 77$

(d) Intermolecular distances (IIa)

$\mathrm{O}(1) \cdots \mathrm{C}\left(2^{\mathrm{I}}\right)$	$3 \cdot 38$	$\mathrm{C}(1) \cdots \mathrm{C}\left(10^{\mathrm{V}}\right)$	$3 \cdot 75$
$\mathrm{O}(1) \cdots \mathrm{C}\left(3^{\mathrm{I}}\right)$	$3 \cdot 52$	$\mathrm{C}(2) \cdots \mathrm{C}\left(9^{\mathrm{II}}\right)$	$3 \cdot 78$
$\mathrm{O}(1) \cdots \mathrm{C}\left(3^{\text {II }}\right)$	$3 \cdot 75$	$\mathrm{C}(3) \cdots \mathrm{C}\left(4^{\mathrm{V}}\right)$	$3 \cdot 69$
$\mathrm{O}(1) \cdots \mathrm{C}\left(9^{\text {III }}\right)$	$3 \cdot 73$	$\mathrm{C}(3) \cdots \mathrm{C}\left(9^{\mathrm{IV}}\right)$	$3 \cdot 75$
$\mathrm{O}(1) \cdots \mathrm{C}\left(10^{\mathrm{III}}\right)$	$3 \cdot 27$	$\mathrm{C}(3) \cdots \mathrm{C}\left(10^{\mathrm{V}}\right)$	$3 \cdot 71$
$\mathrm{~N}(2) \cdots \mathrm{C}\left(8^{\text {IV }}\right)$	$3 \cdot 72$	$\mathrm{C}(4) \cdots \mathrm{C}\left(9^{\text {IV }}\right)$	$3 \cdot 78$
$\mathrm{C}(1) \cdots \mathrm{C}\left(5^{\mathrm{V}}\right)$	$3 \cdot 77$		

Roman numerals as superscripts refer to the equivalent positions which should be applied to the co-ordinates of the second atom:

$$
\begin{array}{ll}
\text { I } 1-x, \frac{1}{2}+y, \frac{3}{2}-z & \text { IV } x, \frac{1}{2}-y, \frac{1}{2}+z \\
\text { II } x, \frac{3}{2}-y,-\frac{1}{2}+z & \text { V } x, \frac{3}{2}-y, \frac{1}{2} \div z \\
\text { III } 1-x, 1-y,-z & \text { VI } x, 1+y, z
\end{array}
$$

(e) Bonded distances (III)

$\mathrm{O}^{\prime}(1)-\mathrm{N}^{\prime}(3)$	$1 \cdot 265(8)$	$\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}(2)$	$1 \cdot 507(7)$
$\mathrm{O}^{\prime}(2)-\mathrm{N}^{\prime}(3)$	$1 \cdot 252(8)$	$\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(3)$	$1 \cdot 323(8)$
$\mathrm{N}^{\prime}(1)-\mathrm{N}^{\prime}(2)$	$1 \cdot 470(8)$	Average $\mathrm{C}-\mathrm{H}$	$1 \cdot 05(6)$
$\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}(1)$	$1.490(9)$		

(f) Interbond angles (III)

$\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}(1)$	$102 \cdot 8(5)$	$\mathrm{N}^{\prime}(1)-\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(3)$	$115 \cdot 0(5)$
$\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}(2)$	$112 \cdot 4(3)$	$\mathrm{O}^{\prime}(1)-\mathrm{N}^{\prime}(3)-\mathrm{O}^{\prime}(2)$	$121 \cdot 5(6)$
$\mathrm{C}^{\prime}(1)-\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}(2)$	$107 \cdot 6(4)$	$\mathrm{O}^{\prime}(1)-\mathrm{N}^{\prime}(3)-\mathrm{N}^{\prime}(2)$	$123 \cdot 0(6)$
$\mathrm{C}^{\prime}(2)-\mathrm{N}^{\prime}(1)-\mathrm{C}^{\prime}\left(2^{\prime}\right)$	$113 \cdot 2(4)$	$\mathrm{O}^{\prime}(2)-\mathrm{N}^{\prime}(3)-\mathrm{N}^{\prime}(2)$	$115 \cdot 5(6)$

(g) Intramolecular non-bonded distances (III)

$\mathrm{O}^{\prime}(1) \cdots \mathrm{N}^{\prime}(1)$	$2 \cdot 65$	$\mathrm{O}^{\prime}(2) \cdots \mathrm{N}^{\prime}(1)$	$3 \cdot 50$
$\mathrm{O}^{\prime}(1) \cdots \mathrm{C}^{\prime}(2)$	$2 \cdot 85$	$\mathrm{~N}^{\prime}(3) \cdots \mathrm{C}^{\prime}(1)$	$3 \cdot 55$
$\mathrm{O}^{\prime}(1) \cdots \cdot \mathrm{H}^{\prime}(21)$	$2 \cdot 26$	$\mathrm{~N}^{\prime}(3) \cdots \mathrm{C}^{\prime}(2)$	$2 \cdot 95$

Table 3 (Continued)
(h) Intermolecular distances (III)

$\mathrm{O}^{\prime}(1)$	$\mathrm{O}^{\prime}\left(1^{\text {I }}\right.$)	$3 \cdot 37$	$\mathrm{O}^{\prime}(2)$	$\mathrm{C}^{\prime}\left(2^{\text {III }}\right)$	$3 \cdot 44$
$\mathrm{O}^{\prime}(1)$	- $\mathrm{N}^{\prime}\left(3^{\text {I }}\right.$)	$3 \cdot 65$	$\mathrm{O}^{\prime}(2)$	$\mathrm{C}^{\prime}\left(2^{1}\right)$	3.62
$\mathrm{O}^{\prime}(1)$	- $\mathrm{C}^{\prime}\left(\mathbf{1}^{\text {II }}\right.$)	3.02	$\mathrm{O}^{\prime}(2)$	$\mathrm{C}^{\prime}\left(2^{\text {IV }}\right.$)	3.88
$\mathrm{O}^{\prime}(1)$	- $\mathrm{C}^{\prime}\left(2^{\text {I }}\right.$)	3.43	$\mathrm{N}^{\prime}(2)$	$\mathrm{C}^{\prime}\left(1^{\text {IV }}\right.$)	$3 \cdot 69$
$\mathrm{O}^{\prime}(2)$	$\cdots{ }^{\prime}\left({ }^{\text {(1III }}\right)$	$3 \cdot 67$	$\mathrm{N}^{\prime}(2)$	$\mathrm{C}^{\prime}\left(2^{\text {lV }}\right.$)	3.63
$\mathrm{O}^{\prime}(2)$	- $\mathrm{C}^{\prime}\left(\mathrm{l}^{\text {IIII }}\right.$)	$3 \cdot 54$	$\mathrm{N}^{\prime}(3)$	$\mathrm{C}^{\prime}\left(\mathbf{l}^{\text {IV }}\right.$)	3.72
$\mathrm{O}^{\prime}(2)$	- $\mathrm{C}^{\prime}\left(\mathbf{l}^{\text {IV }}\right.$)	$3 \cdot 60$	$\mathrm{N}^{\prime}(3)$	$\mathrm{C}^{\prime}\left(2^{1}\right)$	$3 \cdot 84$

Roman numerals as superscripts refer to the equivalent positions which should be applied to the co-ordinates of the second atom:

$$
\begin{aligned}
\text { I } 1-x, \frac{1}{2}+y, 1-z & \text { III } x, y,-1+z \\
\text { II } \frac{1}{2}+x, \frac{1}{2}-y, \frac{3}{2}-z & \text { IV } \frac{1}{2}-x,-y,-\frac{1}{2}+z
\end{aligned}
$$

Table 4

Least-squares planes for (IIa)
(a) Atoms defining the planes

Plane (1): C(5)-(10)
Plane (2): $\mathrm{O}(1), \mathrm{N}(2), \mathrm{C}(4), \mathrm{C}(5)$
Plane (3): N(1), N(2), C(4)
(b) Plane equations

Plane (1): $0.2586 X^{\prime}+0.7014 Y^{\prime}-0.6642 Z^{\prime}=5.2347$
Plane (2): $0.0145 X^{\prime}+0.5667 Y^{\prime}-0.8238 Z^{\prime}=3.0936$
Plane (3): $0.0345 X^{\prime}+0.5386 Y^{\prime}-0.8418 Z^{\prime}=3.1207$
(c) Deviation of atoms (\AA) from planes

Plane (1): $\mathrm{C}(5) 0.010, \mathrm{C}(6)-0.002, \mathrm{C}(7)-0.005, \mathrm{C}(8) 0.005$, $\mathrm{C}(9) 0.003, \mathrm{C}(10)-0.010, \mathrm{O}(1)-0.124, \mathrm{~N}(2) 0.567, \mathrm{C}(4)$ $0 \cdot 141$
Plane (2): $\mathrm{O}(1) 0.003, \mathrm{C}(4)-0.009, \mathrm{~N}(2) 0.003, \mathrm{C}(5) 0.002$
(d) Dihedral angles $\left({ }^{\circ}\right)$ between planes
(1)-(2) 18.5, (2)-(3) $2 \cdot 2$
intra- and inter-molecular non-bonded distances; estimated standard deviations are derived from the inverses of the respective least-squares normal-equation matrices. For

Figure 1 Molecule of (IIa) showing the atomic numbering
(IIa), the mean σ for $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C}$, and $\mathrm{N}-\mathrm{N}$ bonds is $0.006 \AA$, for $\mathrm{C}-\mathrm{H}$ bonds $0.05 \AA$, and for valency angles 0.4°. The corresponding values for (III) are 0.008 and $0.06 \AA$, and
$0 \cdot 5^{\circ}$. These are probably best regarded as minimum values, especially for (IIa) where the block-diagonal approximation was used in the final stages of the leastsquares refinement.

Figure 2 Molecule of (III) showing the atomic numbering. [Since the numbering has been chosen to correspond with that of (IIa), all atoms of (III) are shown with a prime]

Figure 3 A projected view of the molecular packing of (IIa)

Figure 4 A view of the contents of one unit cell of (III)
Details of least-squares planes calculated for various portions of the molecular framework of (IIa) are given in Table 4. The atomic numbering schemes are shown in Figures 1 and 2; Figure 3 shows a projected view of the molecular packing of (IIa) and Figure 4 gives a threedimensional view of the contents of a unit cell of (III).

DISCUSSION

The structure analyses of the compounds (IIa) and (III) have not only revealed some interesting geometrical features of the class of ylides which they represent, but also allow comparisons to be made with the bonding and charge distributions found in the series of compounds ($\mathrm{I} ; \mathrm{X}=\mathrm{O}, \mathrm{N}^{-}, \mathrm{C}$ -).

Examination of the relevant bond lengths in (IIa) and (III) shows that the $\mathrm{N}(1)-\mathrm{N}(2)[1 \cdot 471(5) \AA]$ and $\mathrm{N}^{\prime}(1)-\mathrm{N}^{\prime}(2)[1 \cdot 470(8) \AA]$ bonds are identical, within experimental error, and are similar to the $\mathrm{N}-\mathrm{N}$ singlebond value of $1.45 \AA$ found in hydrazine. ${ }^{9}$ Since it has been demonstrated that opposite formal charges across a bond have a shortening effect, ${ }^{10}$ the absence of any such shortening in the $\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{N}^{\prime}(1)-\mathrm{N}^{\prime}(2)$ bonds is consistent with minor contributions from the resonance forms (IVa) and (Va) respectively in which negative

charges are placed on $\mathrm{N}(2)$ and $\mathrm{N}^{\prime}(2)$, and is therefore also consistent with delocalisation of the negative charge into the respective electronegative moieties. Moreover, the $\mathrm{N}(2)-\mathrm{C}(4)[1 \cdot 313(6) \AA]$ and $\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(3)$ $[1 \cdot 323(8) \AA]$ bonds are not much longer than the values of $1.27-1.29 \AA^{11}$ and $1.25 \AA^{9}$ quoted for $\mathrm{C}: \mathrm{N}$ and $\mathrm{N}: \mathrm{N}$ bonds respectively, but are appreciably shorter than the values of $1.47 \AA^{12}$ and $1.45 \AA^{9}$ given for corresponding single bonds. The lengths of the $\mathrm{N}(2)-\mathrm{C}(4)$ and $\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(3)$ bonds would therefore indicate important contributions from the canonical forms (IVb) and (Vb) in which there is significant charge delocalisation onto the carbonyl and nitro-oxygen atoms respectively. In accord with this suggestion, both the carbonyl bond of (IIa) $[1 \cdot 243(5) \AA]$ and the nitro-bonds of (III) [mean $1-259(6) \AA]$ are slightly longer than would be expected for similar bonds in environments where no charge delocalisation can take place. Moreover, it is usually found that significant delocalisation into such groups results in only slight lengthening of the oxygen bonds.

Analysis of the similar first-row ylide (VI), ${ }^{13}$ in which the electronegative atom X is carbon, reveals that in this case the carbonyl bond is considerably lengthened ($1.27 \AA$), while the adjacent C-C bond ($1.36 \AA$) approaches a double-bond value. By comparing the dimensions of

[^1](VI) with the dimensions of (IIa) and (III), it is possible to contrast the bonding properties of first-row ylides of the type ($I ; X=O, N-, C \backslash$). Since the amine oxides

(VI)
$(\mathrm{I} ; \mathrm{X}=\mathrm{O})$ are stable compounds, it must be concluded that the negative charge can reside on the oxygen atom without the need for further stabilisation. However, for nitrogen ($\mathrm{I} ; \mathrm{X}=\mathrm{N}^{-}$) and then carbon ylides (I ; $X=C<$), increasing stabilisation is required in the form of increasing charge delocalisation into the attached electronegative groupings. This order of increasing charge delocalisation required by each system is that which would be expected on simple electronegativity grounds.

The solid-state conformations of (IIa) and (III) are almost identical, and are characterised by syn-planar relationships within the $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{O}(1)$ and $\mathrm{N}^{\prime}(1)-\mathrm{N}^{\prime}(2)-\mathrm{N}^{\prime}(3)-\mathrm{O}^{\prime}(1)$ systems respectively, the torsion angle about the $\mathrm{N}(2)-\mathrm{C}(4)$ bond being $c a .2^{\circ}$, and that about the $\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$ bond being restricted to 0°. In (IIa) and (III) the cis-relationships may be regarded as arising, at least in part, from electrostatic interactions between the quaternary nitrogen atoms and the appropriate oxygen atoms; in (IIa) the $\mathrm{N}(1) \cdots \mathrm{O}(1)$ separation is $2.74 \AA$, and in (III) the $\mathrm{N}^{\prime}(1) \cdots \mathrm{O}^{\prime}(1)$ distance is $2.65 \AA$, both values being considerably smaller than the sum of the van der Waals' radii (ca. $2 \cdot 90 \AA$). These similar conformations may be contrasted with that observed in the sulphonyl-stabilised sulphur-nitrogen (VII) ${ }^{14}$ and phosphorus-nitrogen (VIII) ${ }^{14}$ second-row ylides, in which $d_{\pi}-p_{\pi}$ bonding is allowed. In both the last-named molecules, no such coplanarity is found for the corresponding group of atoms, the torsion angles about the $\mathrm{N}-\mathrm{S}(1)$ bonds in (VII) and (VIII) being 36.8 and $37 \cdot 6^{\circ}$ respectively.

By use of variable-temperature n.m.r. techniques, further information concerning the conformations of ylides has recently been gained from internal rotation measurements about carbon atoms α and β to the phosphorus in carbonyl-stabilised phosphoranes. It has

[^2]been found that the formyl (IXa) ${ }^{15}$ and acetyl (IXb) ${ }^{15,16}$ derivatives exhibit no conformational mobility, existing as static conformers with the phosphorus usually cis to the oxygen. However, ester-stabilised systems exemplified by the methoxycarbonylphosphorane (IXc) rotate readily. ${ }^{15 a, 17}$ We have carried out variable-temperature n.m.r. experiments on the compounds (II; a-d) with a view to determining the barriers to rotation around the $\mathrm{N}(2)-\mathrm{C}(4)$ bond at temperatures between -80 and $+110{ }^{\circ} \mathrm{C}$. The ambient temperature spectra of (II; $\mathrm{a}-\mathrm{d}$) in CDCl_{3} gave singlet resonances (Table 5) which

Table 5
Chemical shift data * for compounds (II; a-d)
(IIa) : $207.5(9 \mathrm{H}, \mathrm{s}), 443.5(3 \mathrm{H}, \mathrm{br}), 480.0(2 \mathrm{H}, \mathrm{br})$
(IIb) : $461.8\left[1 \mathrm{H}, \mathrm{s}\left(\mathrm{br}, W_{t} 5 \cdot 8 \mathrm{~Hz}\right)\right], 207.0(9 \mathrm{H}, \mathrm{s})$
(IIc): $206 \cdot 1(9 \mathrm{H}, \mathrm{s}), 112 \cdot 2(3 \mathrm{H}, \mathrm{s})$
(IId) : $215 \cdot 2(9 \mathrm{H}, \mathrm{s}), 204 \cdot 2(3 \mathrm{H}, \mathrm{s})$

* Quoted in Hz downfield from tetramethylsilane and referred to solutions ($10-15 \%$, w/v) in deuteriochloroform. Spectra were recorded on a Varian HA 100 spectrometer with a probe temperature of 35°. Variable-temperature n.m.r. determinations were performed with $10-15 \%$ (w/v) solutions in deuteriochloroform, deuteriochloroform-carbon disulphide, or carbon disulphide. Spectra run at temperatures $>60^{\circ}$ were determined with pentachloroethane as solvent; a satisfactory temperature overlap with deuteriochloroform was executed.
are readily assigned. These spectra remain invariant \dagger over the temperature range quoted, and provide no evidence for conformational mobility about the $\mathrm{N}(2)-\mathrm{C}(4)$ bonds. It is possible, therefore, that (II; a-d) exist solely in a cis-conformation as revealed by the present X-ray studies. Moreover, although the n.m.r. spectra of ester-stabilised ylides of phosphorus, ${ }^{15 a, 18}$ arsenic, ${ }^{19}$ and sulphur, ${ }^{15 a}$ exhibit a temperature dependence which may be interpreted in terms of a cis-trans equilibrium associated with internal rotation about the enolate $\mathrm{C}-\mathrm{C}$ bond, no such dependence could be obtained in the case of (IId). Investigations are, however, in hand with other ester groupings in an attempt to ascertain more definitively the conformational characteristics of ester-stabilised N-ammonioamidates.
\dagger For (IIb) a temperature dependence was observed, but this is unconnected with rotational properties of the heteroenolate moiety. At ambient temperature the formyl resonance $H_{\text {a }}$ was broad $W_{t} 5 \cdot 8 \mathrm{~Hz}$; on lowering the temperature to $-75^{\circ} \mathrm{C}$, significant sharpening of the signal occurred to give a singlet $W_{i} 1.9 \mathrm{~Hz}$. This reversible phenomenon is in accord with expectations based on coupling between hydrogens and a nucleus with a quadrupole moment. ${ }^{18}$ It is generally observed that such coupling occurs between ${ }^{14} \mathrm{~N}$ (quaternised nitrogen in (IIb)) and a β-hydrogen. Above room temperature it is expected that the formyl proton will give a triplet resonance; in practice, however, irreversible thermal decomposition of the ylide set in at $105^{\circ} \mathrm{C}$, at which temperature no discernible sharpening to a triplet was apparent.

15 (a) J. P. Snyder, Tetrahedron Letters, 1971, 215, and references therein; (b) I. F. Wilson and J. C. Tebby, Tetrahedron Letters, 1470, 3769; (c) M. L. Filleaux-Blanchard and M. G. J. Martin, Compt. rend., 1970, 270C, 1747.

A further feature of the conformations of (IIa) and (III) is that the $\mathrm{N}(1)$ and $\mathrm{N}^{\prime}(\mathbf{1})$ substituents and the methyl hydrogen atoms are all fully staggered. A consequence of this and of the cis-conformations, is to place two methyl hydrogen atoms of each molecule in close proximity to the carbonyl oxygen of (IIa) and to one of the nitro-oxygen atoms of (III), the $\mathrm{H} \cdots \mathrm{O}$ separations being $2 \cdot 17(5)$ and $2 \cdot 27(5)$ in (IIa), and $2 \cdot 26(5) \AA$ in (III). The mean $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle in (IIa) is 123°, and in (III) is 120°. For significant interaction to exist between hydrogen and oxygen atoms, it has been stated that the $H \cdots O$ separation may not exceed $2 \cdot 4 \AA .{ }^{20}$ A possible interpretation, therefore, of the conformations and non-bonded separations of both (IIa) and (III), is that there exists a degree of hydrogenoxygen interaction, although this can at best be very weak. However, it has not been possible to adduce any evidence for $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding by variabletemperature n.m.r. techniques using carbon disulphide solutions of (IIa).

With the exception of the valency angle $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(2)$ [129.6(4) ${ }^{\circ}$] in (IIa), examination of the dimensions of the remainder of the molecules reveals no unexpected features. It is likely that the value for the $\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(2)$ angle reflects a degree of mutual repulsion between the $\mathrm{N}(2)-\mathrm{C}(4)$ and $\mathrm{C}(4)-\mathrm{O}(1)$ bonds, both of which have considerable double-bond character. The possibility of an extra repulsion effect by the two methyl groups involved in the weak $\mathrm{C}-\mathrm{H} \cdots \odot$ interaction may be partially discounted, since an angle of comparable magnitude [128.6 ${ }^{\circ}$] has been observed recently for the amide grouping in a carbamoyl chloride. ${ }^{21}$

There are no short intermolecular contacts of significance in either structure, and it may be assumed, therefore, that the packing in both crystals has been determined by van der Waals' forces.

We thank the Carnegie Trust for the Universities of Scotland for a post-graduate award (to N. J. H.).
[2/203 Received, 1st February, 1972]
${ }^{16}$ H. I. Zeliger, J. P. Snyder, and H. J. Bestman, Tetrahedron Letters, 1970, 3313.
${ }_{17}$ H. I. Zeliger, J. P. Snyder, and H. J. Bestman, Tetrahedron Letters, 1969, 2199; F. J. Randall and A. W. Johnson, ibid., 1968, 2841 ; D. M. Crouse, A. T. Wehman and E. E. Schweizer, Chem. Comm., 1968, 866; P. Cross, J. Amer. Chem. Soc., 1968, 90, 2961 ; M. A. Shaw, J. C. Tebby, R. S. Ward, and D. H. Williams, J. Chem. Soc. (C), 1967, 2442; 1969, 1100; 1970, 504.

18 J. A. Pople, W. G. Schneider, and H. Bernstein, 'High Resolution Nuclear Magnetic Resonance,' McGraw-Hill, London, 1959.
${ }_{19}$ A. J. Dale and P. Frøyen, Acta Chem. Scand., 1970, 24, 3772.
${ }^{20}$ W. C. Hamilton in 'Structural Chemistry and Molecular Biology,' Freeman, San Francisco, 1968.
${ }^{21}$ P. Ganis, G. Avitabile, S. Migdal, and M. Goodman, J. Amer. Chem. Soc., 1971, 93, 3328.

[^0]: ${ }^{1}$ Preliminary publication, A. F. Cameron, N. J. Hair, D. G. Morris, and D. M. Hawley, Chem. Comm., 1971, 725.
 ${ }^{2}$ A. W. Johnson, ' Ylid Chemistry,' Academic Press, London, 1966.

[^1]: ${ }^{9}$ Chem. Soc. Special Publ., No. 18, 1965.
 10 R. I. Sass, R. Vidale and J. Donohue, Acta Cryst., 1957, 10, 567; . . Caron and J. Donohue, ibid., 1962, 15, 1052; A. Caron, G. J. Palenik, E. Goldish, and J. Donohue, ibid., 1964, 17, 102 ; J. C. J. Bart, J. Chem. Soc. (B), 1969, 350.
 ${ }_{11}$ R. R. Naqui and P. J. Wheatley, J. Chem. Soc. (A), 1970, 2053.
 ${ }^{12}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1948.

[^2]: ${ }^{13}$ N. A. Bailey, S. E. Hull, G. F. Kersting, and J. Morrison, Chem. Comm., 1971, 1429.
 ${ }^{14}$ A. F. Cameron, N. J. Hair, and D. G. Morris, Chem. Comm., 1971, 918.

